Research on the Influence of Several Factors on Clustering Results using Different Algorithms
نویسنده
چکیده
Clustering analysis is an important technology in the field of pattern extraction and recognition. In order to find the influence of several factors on clustering results using different algorithms and support the decision for power load pattern extraction using clustering techniques, this paper develops the research on the influence of several factors on clustering results using different algorithms. In this paper, three data sets, five normalization methods and five known clustering algorithms including k-means, FCM, SOM, hierarchical clustering and spectral clustering are used, four experiments are designed and performed, they are the influence of the normalization methods on the clustering results, the dependence of clustering results on a data set, the algorithm stability and the sensitivity of clustering algorithm to the input order of the data. The results show that all the factors have obvious influence on the clustering results, and using maximum normalization and FCM algorithm in clustering procedure has the best performance for power load pattern extraction.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملWeighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کامل